The Crystal Structure of a New Ferroelectric Compound, NaTh₃(PO₄)^{**}

B. Matković, B. Kojić-Prodić, M. Šljukić, M. Topić, R.D. Willett*, and F. Pullen*

Received February 17, 1970

The crystal structure of ferroelectric $NaTh_2(PO_4)_3$ has been determined using X-ray diffraction techniques. The crystals are monoclinic with dimensions a =17.37(2), b = 6.81(1), c = 8.13(1) Å, $\beta = 101.03$ -(10)° and belong to the space group Cc. The density calculated for Z = 4 is 5.435 g. cm⁻³; that determined by a picnometer is 5.41 g. cm^{-3} . The structure was solvend from 913 observed, independent reflections. The atomic coordinates and temperature factors were refined by full-matrix least squares. The discrepancy indices had final values of 7.1% (including unobserved reflections) and 6.2% (omitting unobserved reflections). The compound may be designated as sodium trisphosphatodithorate. The thorium atom is nine coordinated and thorium-oxygen distances are from 2.27 to 2.58 Å, and phosphorus-oxygen distances vary from 1.52 to 1.59 Å. The atomic arrangement is isostructural with that of KTh₂(PO₄)₃. The main difference in the structures of $NaTh_2(PO_4)_3$ and KTh_2 - $(PO_4)_3$ is the position of the alkali metal atom. The potassium atom in $KTh_2(PO_4)_3$ is on the special position 0, y, $\frac{1}{4}$ on the twofold axis in the space group C2/c, and the sodium atom in NaTh₂(PO₄)₃ is out of twofold axis for 0.8 Å.

Introduction

X-ray diffraction data,¹ the preparation of single crystals and crystallographic data of NaTh₂(PO₄)₃² have been published already. Crystallographic data for other alkaline metal salts of thorium phosphates have been also reported.3 These compounds are monoclinic, space groups C2/c or Cc, Z = 4. Similar values of lattice constants and the same space group extinctions between all alkaline metal salts of thorium phosphates suggest close structural relationship among them. The crystal structure of KTh₂(PO₄)₃ has been solved in centrosymmetric space group C2/c and published recently.⁴ NaTh₂(PO₄)₃⁵ and NaU₂(PO₄)₃⁶ are piezoelectric, ferroelectric and therefore noncentrosymmetric, space group Cc.

Experimental Section

To obtain single crystals of NaTh₂(PO₄)₃ previously described preparations were followed.^{2,3,4}

The crystals are monoclinic, space group Cc (No 9), with unit cell dimensions:

$$a = 17.37 \pm .02 \text{ Å}$$

$$b = 6.81 \pm .01$$

$$c = 8.13 \pm .01$$

$$\beta = 101^{\circ}3' \pm 10'$$

$$Dm = 5.41; Dx = 5.435 \text{ g/cm}^3$$

$$Z = 4$$

The unit cell parameters were determined from oscillation and Weissenberg photographs with CuKa radiation. The density (Dm) was determined by a picnometer with decalin as liquid.

The three-dimensional intensity data were collected on multiple equi-inclination Weissenberg photographs using $CuK\alpha$ radiation. Three crystals were made spherical by grinding for absorption corrections $(\mu = 1133.4 \text{ cm}^{-1})$. On such ground specimens (with the radius of sphere r = 0.081 mm, $\mu r = 9.2$; r =0.082 mm, $\mu r=9.3$ and r=0.065 mm, $\mu r=7.4)$ following zones of reflections were collected: 0kl; h0l to h3l and hk0 to hk4. The relative intensities were determined from the optical densities of each spot by means of a microdensitometer. The corrections for absorption, polarization and Lorentz factors were made in the usual way and the structure amplitudes derived. The scale factors among the various hkl levels of data were improved in the course of structure determination. At the later stages of refinement the observed structure factors were transformed into absolute scale and the mean values were calculated for reflections whose intensities were determined several times. Weights were assigned using the method described by Wiesner and Lingafelter.7

Solution and Refinement of the Structure. The initial atomic coordinates, corresponding to those found in KTh₂(PO₄)₃,⁴ were assumed. The least squares refinement cycles were continued in C2/c space group and resulted in a high isotropic temperature factor

^(**) The paper was presented at the 8th International Congress of Crystallography, Stony Brook, U.S.A., August 1969.
(1) W. F. Schmid and R. W. Mooney, J. Electrochem. Soc., 111, 668 (1964).
(2) B. Matković and M. Šljukić, Croaj. Chem. Acta, 37, 115 (1965).
(3) B. Matković, B. Prodić, and M. Šljukić, Bull. Soc. Chim. France, 1777 (1968).
(4) B. Matković, B. Prodić, M. Šljukić, and S. W. Peterson, Croat. Chem. Acta, 40, 147 (1968).

⁽⁵⁾ M. Topić, B. Prodić, and M. Šljukić, Czech. J. Phys., B19, 1295 (1969).
(6) M. Topić and B. Prodić, J. Appl. Cryst., 2, 230 (1969).
(7) J. R. Wiesner and E. C. Lingafelter, Inorg. Chem., 5, 1170 (1966) (1966).

572

rier map the sodium atom peak was split, and suggested that the sodium atoms were disordered. The correct space group for NaTh₂(PO₄)₃ must be Cc because the crystals are piezoelectric.² When a non centric model was refined by least squares in the space group Cc with all the atoms in general positions, some of the isotropic temperature factors were negative and the coordinates of phosphorus and oxygen atoms were shifted so that P-O bond distances varied from 1.35 to 1.65 Å. Also some oxygen-oxygen distances between different PO4 groupings were also too short, the shortest one was 2.48 Å. Since these irregularities in distances between the atoms could not have a physico-chemical explanation, a further refinement of the structure was attempted in the centric space group C2/c with the sodium atoms disordered about the twofold axis. The atomic coordinates and temperature factors obtained after several full-matrix least squares refinement cycles are listed in Table I and the observed and calculated structure factors in Table II. The atomic scattering factors used were from International Tables for X-ray Crystallography.⁸ Both, the real and imaginary, anomalous dispersion corrections were applied in the atomic scattering factor of Th atom. Isotropic thermal parameters for Th and P atoms, listed in Table I, are those

Table I. Fractional Coordinates for NaTh₂(PO₄)₃. Standard errors are given in parentheses

	x	У	z	B(Ų)
Th(1)	0.1530(1)	0.0924(1)	0.0365(1)	0.59(3)
Na(2)	0.0184(31)	0.3883(83)	0.3482(64)	7.5 (1.4)
P(3)	0.3120(4)	0.0828(10)	0.3130(8)	0.7 (1)
P(4)	0	-0.1041(14)	1/4	1.1 (2)
O(5)	0.0752(11)	0.0297(31)	0.2530(26)	1.5 (4)
O(6)	0.0240(13)	-0.2231(38)	0.0889(30)	2.2 (4)
O(7)	0.2270(10)	0.0517(26)	0.3310(21)	0.6 (2)
O(8)	0.3619(10)	-0.1017(28)	0.3392(23)	0.9 (3)
O(9)	0.2998(9)	0.1502(26)	0.1249(20)	0.5 (3)
O(10)	0.3486(11)	0.2644(34)	0.4127(26)	1.7 (4)

The anisotropic thermal parameters of Th and P atoms are of the form $T = \exp(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}\ell^2 + 2\beta_{12}hk + 2\beta_{13}h\ell + 2\beta_{23}k\ell)$. Each thermal parameter is multiplied by 10^4 . β_{12} and β_{23} for P(4) are required to be zero by symmetry.

	β11	β22	β ₃₃	β12	β13	β23
Th(1)	5(1)	26(2)	32(1)	0(0)	7(1)	1(1)
P(3)	10(2)	30(12)	22(8)	-7(4)	7(3)	3(9)
P(4)	7(3)	37(18)	80(15)	0	8(5)	0
$R_1 = $	$\sum_{\mathbf{h} \in \boldsymbol{\ell}} \mathbf{F}_{\mathbf{o}} - \mathbf{F}_{\mathbf{c}} /$	(includin reflection	g unob 1s)	served		
$R_2 = 1$	Σ F _o F _c / hk <i>ℓ</i>]	$\sum_{h \in \ell} F_o = 0$	0.06 2	(omitting reflection	unobs 1s)	served

obtained at R₂=0.067 (omitting unobserved reflections) before anisotropic temperature factors were adopted. Anisotropic temperature factors for Th and P were refined in the final stages of refinement. The refinement cycles9,10 and the calculation of bond

(8) International Tables for X-ray Crystallography, Vol. III, Birmingham: Kynoch Prcss (1962).

Inorganica Chimica Acta | 4:4 | December, 1970

lengths and angles^{11,12} were carried out on the IBM 360-67 computer at the Washington State University Computing Center^{9,11} and on the CAE 90-40 computer at the Institute of Mathematics Computing Center (University of Zagreb).^{10,12} Table III gives the interatomic distances and angles obtained from the atomic coordinates in Table I. At this time it was found that the crystals of NaTh₂(PO₄)₃ possess ferroelectric properties.⁵ The samples investigated were thought to be polydomain crystals, and the observed structure an average. Several attempts were made to distinguish the positions of the sodium atoms in the domains assuming that the samples investigated were two-domain crystals and that all atoms except sodium met the symmetry requirements of C2/c. None of these models was significantly better on Hamilton's test¹³ than the disordered model.

Description and Discussion of the Structure

The main features of the structure of $KTh_2(PO_4)_3$ are repeated in NaTh₂(PO₄)₃. All PO₄ tetrahedra are discrete groups with no oxygen atom common to two phosphorus atoms, as is obvious from the formula of compound. Each oxygen atom, in addition to being bonded to a phosphorus atom, is also attached to the thorium atom. The packing of thorium atoms and

Figure 1. The structure of KTh₂(PO₄)₃ and symmetry elements projected down the c-axis. Oxygen atoms from the phosphate groups are connected by full lines. Oxygen atoms O(6c) and O(6m) belong to two different phosphate groups related by symmetry operation of twofold axis.

(9) D. Anderson, A local version of the W. R. Busing, K. O. Martin and H. A Levy, ORFLS, A fortran crystallographic least squares program.
U. S. Atomic Energy Commission Report ORNL-TM-305 (1962).
(10) S. Polić, A local version of the W. R. Busing, K. O. Martin and H. A. Levy, ORFLS, A fortran, crystallographic least squares program.
U. S. Atomic Energy Commission Report ORNL-TM-305 (1962).
(11) D. Anderson, A local version of the W. R. Busing, K. O. Martin and H. A. Levy, ORFFE, A fortran crystallographic function and error program.
U.S. Atomic Energy Commission Report ORNL-TM-305 (1962). (11) D. Anderson, A local robotic of a crystallographic function and tin and H. A. Levy, ORFFE, A fortran crystallographic function and error program. U.S. Atomic Energy Commission Report ORNL-TM 306 (1964).
(12) B. Zelenko and D. Trupčević, private communication, (1968).
(13) W. C. Hamilton, Acta Cryst., 18, 502 (1965).

Table II. Observed, FO, and calculated, FC, structure factors

нК	Ŀ	10F0	10FC	нк	L	10F0	10FC	н	кL	10F0	10FC	н	к	L	10F0	10FC	нк	L	1050	10FC	нк	L	10F0	IOFC
0 0	2	3665	3837	2 2	1	2723	-2810	4	-8	1 2 2 0	-1217	6	0	-6	734	-812	8 0	6	3457	-3349	10	0 -10	1732	1809
00	4 6	2458 948	2551 932	22	-1 Z	6100 1774	-6790	4	0 -10 2 0	493 1540	414	6 6	0	8	648	606	8 0	-6	4014	3835	10	2 0	1583	-1502
0 0	8	1155	-1077	2 Z	-2	0	233	4	2 1	3654	3884	6	ŏ	-10	2321	-2543	8 0	-8	3770	3702	10	2 1 2 -1	1649	1520 391
0 0 2	0	3266	3009	2 2	-3	2408 4564	-2625	4	2 - 1 2 2	2190	2100 -992	6	2 2	0	1290 1599	1278	80	-10	1142	1364	10	2 2	1587	-1372
0 2	1	1732	-1558	22	4	1148	-1136	4	2 - 2	2381	-2183	6	2	-1	2402	2758	8 2	1	3491	-3453	10	2 3	2134	2091
0 2	3	3024	-3075	2 2	5	912	-860	4	2 - 3	48.	4091	6	2	-2	1792	1561 1491	82	-1 2	5668 619	-6000 -490	10 10	2-3 24	2447	-2236
02	4	1736	1785	22	-5	2885	- 3024	4	2 4	391	-405	6	2	3	538	- 559	8 2	-2	1662	1548	10	2 -4	915	-805
0 2	6	892	851	2 2	-6	1080	1118	4	2 -4	4510	-1462 4740	6	2	- 3	1456	1476	8 2	-3	2549	-3595	10	25 2-5	3879 3326	3812 - 3342
02	7	3624 548	-3747	2 2 2 2	-7	1694	1574	4	2 -5	1769	-1743	6	2	-4	831	650	8 2	4	1071	-1028	10	2 6	0	34
0 2	9	1939	-1986	2 2	8	806	-757	4	-6	1506	-1402	6	z	-5	3400	3408	8 2	5	1917	-1893	10	2 -0	2001	-869 2156
02	10	670 3837	-769 -3903	22	-8 9	1945 1776	1809 1826	4 4	-7	1750	1675	6	2 2	6 -6	1198	1193 -145	82	-5	820 1312	-787	10	2 -7	2877	-2922
04	1	1575	-1471	22	-9	506	499	4	8	1010	961	6	2	7	2814	-2721	8 2	-6	1936	1741	10	2 -9	2830	-3127
04	3	2067	-1968	24	0	1514	1386	4 4	-8 9	871 766	-714	6	2	-7 8	3470 430	3514 334	8 2	-7	-382	- 295	10	4 0 4 1	2074	2142
04	4	1809	-1703	24	1	2603	-2629	4 1	-9	2832	-2954	6	2	-8	1295	-1336	8 2	8	972	-961	10	4 -1	0	322
04	6	1017	-895	2 4	2	2408	2499		-10 0	2329	-6 2251	6	2	-9	1370	1371	8 2	-9	1679	1731	10	4 2 4 - 2	2432	2399 1916
04	7 8	2840 537	-2829 528	24	-2 3	0 1998	-327 -1820	4 4	1	3052	3044	6	2 ∡	-10	947 3296	-980	84	0	483 2417	-505	10	4 3	1628	1665
04	9	1385	-1268	24	-3	2912	-2590	4	2	1348	1504	6	4	ĩ	1346	952	8 4	-1	3669	-3606	10	4 4	1189	1113
06	0	4557	-4669 -163	24	-4	2159	-1420	4 4	-2	3156	3296	6	4	-1	1910	2077	84	_2 _2	1097 1520	1098 -1545	10	4 -4 6 0	2103	1847
06	2	2889	-2816	26	0	1319	1434	4 4	-3	0	-166	6	4	-2	1348	-1042	8 4	3	2794	-2812	10	6 1	423	- 500
06	4	2124	-2052	2 6 2 6	-1	1602	1420	4 4	-4	0 2341	82	6	4	-3	0 3908	-387 3636	84	-3	1635	-1496	10 10	6 -1 6 2	2654	81 2533
06	5	1059	980	26	2	3190	2948	4 6	0	2791	2741	6	4	4	2807	-2629	8 4	-4	2951	-2891	10	6 -2	3827	3814
0 6	7	904	836	26	-2	993	927	46	-1	1304 660	-1194 -490	6	4	- 4 0	1351 3749	-749 -3783	8 6	5 1	692 831	-574 918	10	63 6-3	333	-731 334
08	0	241	-254	26	-3	959 2976	1051	4 6	2	989	1016	6	6	1	0	-356	8 6	-1	1367	1268	10	6 4	1006	1107
0 8	z	230	-85	2 6	-4	1670	-1508	4 6	-2	1096	-1041	6	6	-1	2963	-2871	8 (-2	2233	-2144	11	1 0	1986	-1851
08	3	1599 257	1778	28 28	0	360 2346	385 2323	4 6	-3	289	-214	6	6	-2	1743	-1749	8	3	1255	1125 902	11	1 1	2852	2583
1 1	o	3351	3302	28	-1	3437	3470	4 6	-4	2773	2679	6	6	-3	1627	-1477	8 (4	2005	1909	11	1 2		128
1 1	-1	2815 2457	-2595 -2820	28	-2	0 545	-108	48	0	239 2661	112	6	6	4	3037	-3152	8 1	s -4 3 0	3015 489	-2858 234	11	1 -2	3076	-3002
1 1	2	1413	1272	28	3	1311	1581	4 8	-1	1399	-1418	6	8	0	208	-97	8	3 1	2167	2350	11	1 -3	1520	1457
1 1	-2	2902	-2738	28	- 3	3567	-3723	48	-2	0	-52	6	8 8	1 -1	759 1718	-506	8	s -1 8 2	2578	-118	11	1 -4	3420	-3216
1 1	-3	1206	-1365	31	1	0	-427	4 8	3	2265	-2360	6	8	2	0	-81	8	8 -2	318	-316	11	1 5	1667	1582
1 1	-4	6250	6177	3 1	2	5441	-5840	5 1	3	294	-219	6	8	-2	3037	-249	9	1 1	1510	-1439	11	1 6	1940	1805
1 1	5	1612	-1556	31	-2	3761 1126	-4486	51	1	3639	3570	7	1	0	3733	3897	9	l -1 1 2	2523	-2407 -4069	11	1 -6	4231	-4051
1 1	6	2538	-2580	3 1	- 3	1834	-1989	5 1	2	2369	2479	7	1	-1	736	-835	9	i -2	1946	-1874	11	1 -1	1170	-1063
1 1	-6	2117	2145	31	-4	2589 1842	-2722	51	-2	1351	-1196	7	1	2	2781	2818 4881	9	13 1-3	0 2373	-218 -2286	11	1 -8	1748	-1657
i i	-7	1121	1204	3 1	5	1904	1909	5 1	-3	2256	2236	7	i	3	2574	-2510	9	1 4	2970	-2918	11	3 () (180
1 1	8 - 8	2178 2018	-2043 1963	3 1 3 1	-5	2858 1569	-3128 -1531	5 1 5 1	-4	3586	3618	7	1	-3 4	345 666	457 580	9	1 -4 1 5	647	236 587	11	3 -1	2821	2751
1 1	9	494	-432	31	-6	0	566	5 1	5	1017	1043	7	ī	-4	3953	4100	9	1~5	2949	-2909	11	3 2	. (216
1 1	-9 10	1478 2559	1464 -2642	3 1	-7	1790	-1807	5 1	-5	1440 2948	1603 2837	7	1	-5	1561 1399	-1338 1449	9	1 -6	2525	2514	11	3 3	3068	3072
1 1	-10	571	742	31	8	0	-195	5 1	-6	3495	- 3642	7	1	6	741	-607	9	1 7	1162	1086	11	3 -3	2092	1890
1 3	1	4837	-5196	3 1	-8	1789	1779	51	-7	470	-89 558	. 7	1	-b 7	1959	-1835	9	1 8	1081	-1065	11	3 -	4 89	747
13	-1	3272	-3426	31	-9	1545	-1303	51	8	2443 2660	2471	7	1	-7	2109	2187	9 9	1-8 1-9	2412	-535	11	3 :	5 5 54	2124
1 3	-2	1623	-1571	3 3	0	0	377	5 1	-0	833	-906	7	ì	-8	659	650	9	1 -10	1719	2128	11	3	6 65	-623
13	-3	5720	-6056	33	1	799 2605	-493 -2609	5 1 5 1	-9 -10	782 2028	-712	7	1	9 - 9	806 1580	-910 1620	9	30 31	2395	-2488	11	3	5 82 7 981	1076
1 3	4	0	171	3 3	2	865	587	5 3	0	0	-31	7	1	-10	337	-285	9	3 -1	3996	-4073	11	3 -	7 210	9 -2072
13	-4 5	836 2710	-731	33	-2	1296 2355	1191 2405	53	-1	5586 4735	6159 4917	77	3	0	2749	-1502	9	3 -2	707	652	11	3 -	9 224	0 -2106
1 3	-5	1365	1343	3 3	-3	3608	-3428	5 3	2	0	-180	7	3	-1	648	-628	9	3 3	i 1939	113	11	5 5	0 116 1 120	4 1453 5 1011
1 3	-6	278	428 -341	33	-4	996 538	391	53	-2	0 2237	427 2273	7	3	-2	923	-614	9	3 4	0	368	11	5 -	1 37	1 509
1 3	7	1970	-1911	3 3	5	3168	3021	53	-3	4469	4439	7	3	3	4580	-4851	9	3 -4	410 1221	-402 1169	11	5 -	2 2 275	1 2779
1 3	8	698	565	3 3	6	549	384	5 3	-4	399	362	7	3	4	0	-189	9	3 -5	4615	-4858	11	5	3 32	4 516 0 376
1 3	-8 9	355 462	-273 - 4 86	33	-6 7	0 2914	-173 2757	53	-5	1056 1789	1025	7	3	-4 5	858 3101	- 705	9	3 -6	5 0	-295	11	5	4 128	5 -1240
1 3	-9	2253	2222	3 3	-7	3197	-2988	5 3	6	269	- 347	7	3	- 5	2769	2640	9	3 7	1740	1680	11	5-	4 311 0 99	9 3096 2 1054
15	0	2113	-2064 -509	33	8 -8	0 296	- 207	53	-6 7	1091 187	945 -206	7	3	-6	233	-109	9	3 8	3 0	125	11	7	1 242	3 -2598
1 5	-1	0	-247	3 3	9	3320	3016	5 3	-7	0	120	7	3	7	2885	-2925	9	3 -6	3 668 9 797	-616 -873	11	7 -	1 160 2 55	3 -1622 7 -542
15	-2	3206	-3155	33	-9	3412	3379	53	-8	417	414	7	3	- 7	195	140	9	5 (2301	2309	11	7 -	2 161	7 1484
15	3	1513	-1292	35	1	594	-386	53	-9	1215	-1083	7	3	-8	283 2360	-293 2431	9	5 -1	1 1090	- 658	11	7 -	4 153	7 1685
1 5	- 4	1100	1284	3 5	2	4663	4701	5 5	1	719	855	7	5	ó	3710	-3805	9	5	2 3835	3871	12	0	0 249 2 326	6 2465 7 3250
15	-4	4907	-4631 -1254	3 5	-2	3805	3684	55	-1	590	743	7	5	1 -1	0 407	-183	9	5 3	3 0	135	12	ō -	2 61	2 -196
1 7	1	2263	2226	3 5	-3	647	-656	5 5	-2	1766	1119	7	5	2	2050	-2057	9	5 -	3 434 4 2570	-568 2691	12	0 -	4 480 4 193	• 4659 6 -1805
1 7	-1 2	2205 993	-933	35	-4	2818 1665	2612	55	-3	440 1281	441 1018	7	5	-2	720	-3410	9	5 -	648	-442	12	0	6 201	5 2000
1 7	-2	1654	-1555	3 7	0	1847	1793	5 5	4	3626	-3410	7	5	-3	314	-223	9	7 0	0 1276 1 1329	1121	12	0 -	8 303	4 -2952
1 7	-3	3028 691	490	37	-1	1477	1445	55	-4	3098 0	-180	7	5	-4	4431	-4199	9	7 -	2356	2466	12	2	0 110	7 1084
1 7	4	1009	1102	3 7	2	2552	2477	. 5 7	1	2912	-2860	7	7	0	1880	-1889	9	7 -	2 725	576	12	2 -	1 329	5 3218
2 0	0	3343	-2654	3 7	-2	1113	-1002	5 7	2	1 306	-1248	7	7	-1	0	346	9	7	3 1024	2018	12	2 -	Z 80 Z 54	5 633 8 584
20	2	4196	-5075	3 7	-3	2038	1968	5 7	-2	668	577	7	7	2	1596	-1407	9	7 -	4 348	146	12	2	3 169	0 1628
2 0	4	3512	-3682	3 7	-4	892	855	5 7	-3	2538	-2424	7	7	-2	2242	2337	10	0	0 4196 2 3297	-4269	12	2 -	5 465 4 180	9 1618
20	-4	2908	3141 -5245	4 0) 0	4717	-4118 -1999	5 7	4	1558	-1518	7	7	-3	347 394	-359	10	0 -	2 5932	-6308	12	2 -	4 70	1 -564
2 0	-6	3282	3079	4 0	-2	6877	-7102	6 0	0	6133	6665	1	7 7	-4	2019	-2084	10	0 -	4 1961 4 3018	-1830 -2913	12	ž -	5 252	9 2415
20	-8	2169	-2191 4020	4 0) 4	4576	-99 -4717	6 0	-2	5820 2072	6315 1884	8	30 80	0	1120 1584	-1704	10	0	6 0	200	12	2	6 85	1 834
2 0	10	1002	-1086	4 0		2252	2279	6 0	4	3941	4080	8	во	-2	3823	4023	10	0 -	6 1723 8 1202	-1698	12	2	7 126	4 -1323
2 0	-10	1542	-1280	4 0		3 2705	2516	6 (-4	1822	1874	6	в 0 в 0	-4	2658 4181	4069	10	0 -	8 537	339	12	2.	7 216	0 1919

Matković, Kojić-Prodić, Šljukić, Topić, Willett, Pullen | Crystal Structure of NaTh₂(PO₄)₃

Tab	le	11.	(Co	ntinued)																								
н	K	L	1050	10 F C	H	ĸ	г	10F0	10FC	н	к	L	10F0	10FC	н	ĸ	L	10F0	10FC	н	ĸ	L	1070	IOFC	н	к	L	10F0	1050
12	z	-8	1178	-1185	13	3	-4	0	-151	14	4	-1-	1827	-1725	15	5	-1	582	-719	17	1	-5	807	-782	19	1	1	707	675
12	2	-9	410	320	13	3	5	2249	-2106	14	4	2	425	-458	15	5	-2	829	-762	17	1	-6	2558	-2410	19	1	-1	1363	1277
12	4	0	1289	-1221	13	3	-5	3451	3106	14	4	-2	2286	-2176	15	5	3	474	-359	17	1	-7	1580	-1646	19	1	2	2196	2176
12	4	1	1778	1697	13	3	6	138	49	14	4	3	2460	-2647	15	5	-3	590	-548	17	1	-8	735	-698	19	1	-2	1164	1149
12	4	-1	2430	2545	13	3	-0	222	-79	14	4	-3	893	-866	15	5	-4	1720	-1793	17	3	0	442	321	19	1	3	278	-260
12	4	2	1895	-1881	13	3	-7	3/83	3//3	14	1	1	505	569	10	0	2	3079	-3119	17			2991	2817	19	1	-3	1804	1763
12	1	-2		-221	13	2		1610	1764	14			2014	-2003	10			1002	-3960	17	3	-1	1154	1084	19	1	-4	186	169
12	1	3	1304	1287	13	2		3510	-3/04		b c	, ,	1583	-1/2/	10	Ň	- 2	1054	-33/3	17	2	4	3/1	318	19		-5	1615	1642
12	1		3775	3391	13	2	-1	372	- 527	17	4	1	1015	061	16	~		1202	-1991	17	1	-2	2260	744	19		-0	705	-718
12	1	-	677	-2200	11	5	-;	2336	-2416	14	4	-1	2360	-2171	16	ň	-6	785	773	17	1		362	-235	19	3		598	-536
12	7		1692	-1723	13	5	-2	2746	-2730	14	Ă		310	-197	16	ñ	-8	1991	1807	17	1	- 4	502	- 635	19	1	- 1	2200	1137
12	~	1	779	-1132	13	5		0	-144	14	ě	-4	2601	- 3242	16	2	0	1039	-994	17	ĩ	-4	531	491	19	1	-;	478	- 357
12	~	-1	1000	-974	13	ś		343	267	15	ĩ	0	1148	-1169	16	2	ĩ	576	- 10 9	17	3	- 5	1541	-1587	10	1		420	-01
12	~	-,	2154	-2136	13	ś		1447	-1832	15	î	ĩ	1647	-1597	16	2	-1	1680	-1602	17	ñ	-6	400	473	19	1		2835	2006
12	ě	-2	382	-415	13	5	.4	2044	-2044	15	î	-1	2696	-2479	16	2	2	1745	-1553	17	3	-7	2544	-2619	19	ĩ	-4	2035	-48
12	6	3	386	-119	13	7	o o	1780	-1964	15	i	2	2491	-2171	16	2	-2	1216	-1029	17	5	Ó	1770	2050	19	š	-5	2316	2671
12	6	- 3	1220	-1171	13	7	-1	697	- 543	15	1	-2	537	683	16	2	3	840	786	17	5	-1	369	290	20	0	Ō	2724	2971
12	6	-4	1453	1516	13	7	-2	1400	-1290	15	1	3	1395	-1003	16	2	-3	3076	-2927	17	5	-2	3019	3253	20	ō	2	1800	2081
13	ī	ō	4582	4663	14	0	0	2931	3070	15	1	-3	1843	-1685	16	2	4	901	-825	17	5	- 3	109	-70	20	0	-2	2859	2890
13	ī	1	408	- 555	14	0	2	1068	861	15	1	4	1964	-1816	16	2	-4	524	- 542	17	5	-4	2147	2374	20	0	-4	3185	3188
13	1	-1	1216	972	14	0	-2	3211	3220	15	1	-4	2285	2220	16	2	5	1849	1791	18	0	0	397	-310	20	0	-6	1350	1305
13	1	2	2361	2323	14	0	4	1050	-1094	15	1	5	386	-378	16	2	-5	3623	-3657	18	0	2	1446	1375	20	2	0	946	912
13	1	- 2	2522	2447	14	0	-4	4949	4899	15	1	- 5	1725	-1549	16	2	- 6	0	- 60	18	0	-2	1494	-1427	20	2	1	1160	-1305
13	1	3	1527	-1384	14	0	6	1772	-1635	15	1	6	2585	-2566	16	2	-7	2141	-2302	18	0	- 4	2228	2557	20	2	-1	551	- 523
13	1	- 3	1400	1403	14	0	-6	2642	2612	15	1	-6	2456	2400	16	2	-8	705	614	18	0	-4	2766	-2735	20	2	2	827	888
13	1	4	2034	2025	14	0	-8	2197	2240	15	1	-7	615	-376	16	4	0	1595	1619	18	0	-6	3348	-3365	20	2	-2	1203	1195
13	1	-4	2207	2107	14	2	0	1217	1072	15	1	-8	2818	2869	16	4	-1	1235	-1273	18	2	0	0	85	20	2	-3	984	1037
13	1	5	1143	-1077	14	2	1	2939	-2741	15	3	0	0	342	16	4	-2	2112	1916	18	2	1	2955	2972	20	2	-4	1252	1291
13	1	-5	1899	1855	14	2	-1	2925	-2820	15	3	1	2736	-2799	16	4	3	815	898	18	2	-1	2622	2610	20	z	- 5	2012	1969
13	1	6	781	709	14	2	2	805	452	15	3	-1	4355	-4246	16	4	- 3	2166	-2168	18	2	2	520	527	21	1	0	176	314
13	1	-6	442	429	14	2	-2	1096	1022	15	3	2	540	424	16	4	-4	872	801	18	2	-2	388	-341	21	1	1	1401	-1338
13	1	7	1342	-1412	14	2	3	3446	-3489	15	3	-2	0	-120	16	6	-1	607	533	18	z	3	1697	1862	21	1	-1	1710	-1688
13	1	-7	2471	2430	14	2	-3	696	-607	15	3	3	1625	-1563	16	6	-2	2113	2104	18	z	-3	3009	3008	21	1	-2	1880	2039
13	1	-8	983	-887	14	2	- 4	484	-400	15	3	- 3	3165	-2954	16	6	-3	407	894	18	z	-4	1204	-1158	21	1	-3	706	-746
13	1	-9	1169	1219	14	2	-4	2236	2061	15	3	4	274	295	17	1	0	2138	-2154	18	2	- 5	1064	1072	21	1		1806	2242
13	3	0	766	-679	14	2	5	1950	-1996	15	3	-4	412	- 531	17	1	1	1522	1342	18	2	-0	1190	-1251	21	1	- 2	517	-420
13	3	1	834	-823	14	2	-5	1462	1311	15	3	5	473	-507	17	1	-1	690	640	18	z	-7	148	142	21	3	-2		-285
13	3	-1	2094	2006	14	z	6	598	-688	15	3	- 5	2662	-2658	17	1	Z	1280	-1220	18	1	0		2010	22	U	-2	1088	- 995
13	3	2	906	-757	14	2	-6	1160	1073	15	3	-6	529	- 546	17	1	-2	3514	-3397	18	1	-1	1993	2069					
13	3	- 2	547	-589	14	2	-7	1742	1706	15	3	-7	587	· 622	17	1	3	1331	1256	18		-2	2023	2103					
13	3	3	2360	-2280	14	Z	-8	981	880	15	3	-8	427	-421	17	4	-3	220	287	18	1	- 3	12031	1402					
13	3	-3	2534	2491	14	4	0	1466	-1619	15	5	0	949	928	17	1	1	228	-2/9	18	1		2600	2567					
13	3	- 4	255	-328	14	4	1	1821	-1/85	15	2		605	-008	17		-4	2002	-2050	1.9			2000	6.501					

the phosphate groups is very close in the whole unit cell except along twofold axes between phosphate groups where there are channels parallel to the c-axis, Figure 1. These channels are so large that any of alkaline metal cation fit inside their and leave the unit cell practically unchanged.³ Figure 2 represents a perspective view of the cavity. The centre of the cavity is surrounded by eight oxygen atoms of six phosphate groups, two of which are bidentate and the others monodentate. A twofold axes passes through the cavity (in the case of C2/c space group) and relates the oxygen atoms of the bidentate phosphate groups.

Figure 2. A view down the polyhedron of oxygen atoms around the alkali metal atom (which is omitted in the figure).

In the structure of KTh₂(PO₄)₃ potassium atom is located on the twofold axis close to the centre of the cavity.

Inorganica Chimica Acta | 4:4 | December, 1970

When a smaller, sodium atom is in the cavity, it is out of two fold axes and farther from the centre. The closest sodium-oxygen distance is 2.49 Å. In the case of NaTh₂(PO₄)₃ the results of the least squares refinement suggest that each of two sodium atoms occupies half of positions which are out, but close to twofold axes. Figure 3 shows both positions of two half sodium atoms in the cavity and the empty site where, in

10FC 675 1277 2176

Figure 3. The positions of two sodium atoms (black circles) in the structure of NaTh₂(PO₄)₃ in comparison with the empty site where, in KTh₂(PO₄)₃, potassium atom is located. The empty site of potassium atom and coordinated oxygen atoms from phosphates groups are connected by full lines.

KTh₂(PO₄)₃, potassium atom is located. Figure 4 is the projection of the structure of NaTh₂(PO₄)₃ on a plane normal to b axis. The atomic positions are the

Table III. Interatomic distances and angles in NaTh₂(PO₄)₃ Standard errors are in parentheses

A	В	С	Distances A-B	(Å) A-C	Angles (degrees) A-B-C	
Within Th-polyhedron						
O(6c)	Th(1)	O(5e)	2.44(2)	2.42(3)*	57.5(7)	
O(7)	Th(1)	O(9)	2.51(2)	2.38(2)*	56.3(4)	
O(5e)	Th(1)	O(7e)	2.58(2)	2 60(3)	61.5(6)	
O(5)	Th(1)	O(7)	2.45(2)	2.00(3)	63.1(6)	
O(9g)	Th(1)	O(9)	2.42(1)	2.76(2)	67.4(4)	
O(9)	Th(1)	O(7e)	2.54(1)	2.84(2)	68.5(4)	
O(7e)	Th(1)	O(9g)	2.50(2)	2.81(2)	69.6(5)	
	Th(1)	O(9g)	2.35(2)	2.76(1)	70.6(4)	
O(10h)	1h(1) Th(1)	O(5)	2.27(1)	2.74(2)	/0.8(6)	
	1 D(1) Th(1)	O(6c)		3.05(3)	71.0(7)	
	Th(1)	O(0C)		2.02(3)	71.9(7)	
0(10b)	Th(1)	O(7e)		2.91(2) 2.95(2)	74.9(4)	
O(8h)	Th(1) Th(1)			2.93(2) 2.89(3)	74.0(6)	
O(7)	Th(1)	O(8b)		$\frac{2.09(3)}{3.01(2)}$	76 5(5)	
	Th(1)	O(5e)		3.01(2)	79.8(5)	
O(8b)	Th(1)	0(9)		3.12(2)	85 9(6)	
O(5e)	Th(1)	O(9g)		3.40(3)	85.6(5)	
O(6c)	Th(1)	O(9g)		3.25(3)	83.6(7)	
O(10h)	Th(1)	O (9)		3.65(2)	98.5(6)	
O(5)	Th(1)	O(5e)		4.09(1)	108.6(7)	
O(7)	Th(1)	O(7e)		4.13(1)	111.1(6)	
O(10h)	Th(1)	O(6c)		3.94(3)	113.0(8)	
O(6c)	Th(1)	O(7e)		4.15(3)	114.4(7)	
O(7)	Th(1)	O(9g)		4.17(2)	115.6(5)	
O(5)	Th(1)	O(9)		4.31(2)	119.0(5)	
O(8b)	Th(1)	O(5e)		4.39(2)	126.0(5)	
O(5e)	Th(1)	O(9)		4.62(2)	128.9(5)	
O(7)	Th(1)	O(6c)		4.56(3)	134.4(7)	
O(8b)	Th(1)	O(7e)		4.53(2)	138.5(6)	
O(10h)	Th(1)	O(8b)		4.37(2)	141.9(3)	
O(5)	Th(1)	O(9g)		4.03(2)	143.5(6)	
O(IUN)	In(1)	O(9g)		4.49(2)	145.7(5)	
O(5)	1 D(1) Th(1)	O(ne)		4.74(3)	140.8(0)	
O(00)	Th(1)	O(5)		4.00(3)	140.3(7)	
O(I)	1 (1)	0(36)		4.50(3)	134.7(0)	
	Wi	thin the pl	hosphate gr	oups		
O(6)	P(4)	O(5f)	1 57(7)	2 42(7)	102(1)	
O(6f)	P(4)	O(5)	1.55(5)	2.42(3)	102(1)	
O(5)	P(4)	O(6)				
O(5f)	P(4)	O(6f)	1.59 (2)	2.61(3)	114(1)	
O(5)	P(4)	O(5f)		2.60(4)	110(1)	
O(6)	P(4)	O(6f)		2.59(5)	116(2)	
O(7)	P(3)	O(9)	1.53(2)	2.38(2)	100(1)	
O(9)	P(3)	O(10)	1.57(1)	2.46(1)	104(1)	
O(8)	P(3)	0(7)	1.52(2)	2.55(2)	114(1)	
O(10)	P(3)	0(7)	1.55(1)	2.54(2)	112(1)	
0(8)	P(3)	O(9)		2.53(2)	110(1)	
U(8)	P(3)	O(10)		2.58(2)	115(1)	

* Also within the phosphate group.

mean values from the least squares refinement carried out in the space group C2/c. The $[Th_2(PO_4)_3]$ groupings in NaTh₂(PO₄)₃ are not significantly different from those in KTh₂(PO₄)₃. The interatomic distances and angles in NaTh₂(PO₄)₃ are represented in Table III. Thorium-oxygen distances are from 2.27 to 2.58 Å. Phosphorus-oxygen distances within the phosphate groups vary from 1.52 to 1.59 Å. From the results obtained in the idealized structure it is obvious that the bond lengths and angles in PO₄ tetrahedra deviate to some small extent from the results obtained and discussed before.⁴ Table III. (Continued)

	Sodium-oxygen distances ≤ Standard errors are 0.06	4.02 Å Å
Na(2)	O(6m)	.2.49
Na(2f)	O(6c)	2.49
Na(2)	O(8k)	2.71
Na(2f)	O(8b)	2.71
Na(2)	O(61)	2.60
Na(2f)	O(6a)	2.09
Na(2)	O(5)	2.00
Na(2f)	O(5f)	2.80
Na(2)	O(8b)	2.90
Na(2f)	O(8k)	2.80
Na(2)	O(10j)	2.01
Na(2f)	O(10d)	2.91
Na(2)	O(5f)	2.06
Na(2f)	O(5)	2.90
Na(2)	O(8j)	7 70
Na(2f)	O(8d)	5.50
Na(2)	O(6a)	7 70
Na(2f)	O(61)	5.58
Na(2)	O(9b)	7 60
Na(2f)	O(9k)	5.00
Na(2)	O(6c)	7 75
Na(2f)	O(6m)	5.75
Na(2)	O(10k)	4.02
Na(2f)	O(10b)	4.02

Numbering of the Atoms

Small letters indicate symmetry transformations or cell translations:

a:	x , $y + 1$, z	h: $\frac{1}{2}$ - x, $\frac{1}{2}$ + y - 1, $\frac{1}{2}$ - z
b:	$\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$	i: $\frac{1}{2} + x - 1$, $\frac{1}{2} + y - 1$, z
c:	—x, —y, —z	j: ½-x, ½-y, 1-z
d:	$\frac{1}{2} + x - 1$, $\frac{1}{2} - y$, $\frac{1}{2} + z - 1$	k: $\frac{1}{2} + x - 1$, $\frac{1}{2} + y$, z
e:	x , -y, $\frac{1}{2}$ + z-1	1: $-x, y+1, \frac{1}{2}-z$
f:	$-x, y, \frac{1}{2}-z$	m: x, $-y$, $\frac{1}{2}+z$.
g:	½x, ½y,z	

Figure 4. Projection of the structure of $NaTh_2(PO_4)_3$, on a plane normal to b-axis. Oxygen atoms from the phosphates groups are connected by full lines. Only those atoms are numbered which are mentioned in the text or tables.

Matković, Kojić-Prodić, Šljukić, Topić, Willett, Pullen | Crystal Structure of NaTh₂(PO₄)₃

The present paper describes without any ambiguity the structural model of a hitherto unknown ferroelectric compound. Bond lengths and angles do not represent the absolute truth because they were obtained on the assumption that the shifts of atoms in domains do not have significant value. The standard deviations of bond lengths and angles, which were obtained from the least squares refinement, are probably under estimated. More precise structural studies of a monodomain ferroelectric sample stabilized by an electric field are planned in order to give more accurate values for bond lengths and angles and to completely explain why the crystals of $NaTh_2(PO_4)_3$ exhibit ferroelectric properties.